thermopower waves

Produced with a “bottom-up” self-assembly technique, the new structure takes advantage of nanotechnology to fine-tune its materials properties, addressing the shortcomings of earlier silicon-based battery anodes. The simple, low-cost fabrication technique was designed to be easily scaled up and compatible with existing battery manufacturing.
Details of the new self-assembly approach were published online in the journal Nature Materials on March 14.
“Development of a novel approach to producing hierarchical anode or cathode particles with controlled properties opens the door to many new directions for lithium-ion battery technology,” said Gleb Yushin, an assistant professor in the School of Materials Science and Engineering at the Georgia Institute of Technology. “This is a significant step toward commercial production of silicon-based anode materials for lithium-ion batteries.”
The popular and lightweight batteries work by transferring lithium ions between two electrodes – a cathode and an anode – through a liquid electrolyte. The more efficiently the lithium ions can enter the two electrodes during charge and discharge cycles, the larger the battery’s capacity will be.
Existing lithium-ion batteries rely on anodes made from graphite, a form of carbon. Silicon-based anodes theoretically offer as much as a ten-fold capacity improvement over graphite, but silicon-based anodes have so far not been stable enough for practical use.
Graphite anodes use particles ranging in size from 15 to 20 microns. If silicon particles of that size are simply substituted for the graphite, expansion and contraction as the lithium ions enter and leave the silicon creates cracks that quickly cause the anode to fail.

“At the nanoscale, we can tune materials properties with much better precision than we can at traditional size scales,” said Yushin. “This is an example of where having nanoscale fabrication techniques leads to better materials.”
Electrical measurements of the new composite anodes in small coin cells showed they had a capacity more than five times greater than the theoretical capacity of graphite.
Fabrication of the composite anode begins with formation of highly conductive branching structures – similar to the branches of a tree – made from carbon black nanoparticles annealed in a high-temperature tube furnace. Silicon nanospheres with diameters of less than 30 nanometers are then formed within the carbon structures using a chemical vapor deposition process. The silicon-carbon composite structures resemble “apples hanging on a tree.”
Using graphitic carbon as an electrically-conductive binder, the silicon-carbon composites are then self-assembled into rigid spheres that have open, interconnected internal pore channels. The spheres, formed in sizes ranging from 10 to 30 microns, are used to form battery anodes. The relatively large composite powder size – a thousand times larger than individual silicon nanoparticles – allows easy powder processing for anode fabrication.
The internal channels in the silicon-carbon spheres serve two purposes. They admit liquid electrolyte to allow rapid entry of lithium ions for quick battery charging, and they provide space to accommodate expansion and contraction of the silicon without cracking the anode. The internal channels and nanometer-scale particles also provide short lithium diffusion paths into the anode, boosting battery power characteristics.
The size of the silicon particles is controlled by the duration of the chemical vapor deposition process and the pressure applied to the deposition system. The size of the carbon nanostructure branches and the size of the silicon spheres determine the pore size in the composite.
Production of the silicon-carbon composites could be scaled up as a continuous process amenable to ultra high-volume powder manufacturing, Yushin said. Because the final composite spheres are relatively large when they are fabricated into anodes, the self-assembly technique avoids the potential health risks of handling nanoscale powders, he added.
Once fabricated, the nanocomposite anodes would be used in batteries just like conventional graphite structures. That would allow battery manufacturers to adopt the new anode material without making dramatic changes in production processes.
So far, the researchers have tested the new anode through more than a hundred charge-discharge cycles. Yushin believes the material would remain stable for thousands of cycles because no degradation mechanisms have become apparent.
“If this technology can offer a lower cost on a capacity basis, or lighter weight compared to current techniques, this will help advance the market for lithium batteries,” he said. “If we are able to produce less expensive batteries that last for a long time, this could also facilitate the adoption of many ‘green’ technologies, such as electric vehicles or solar cells.”

The phenomenon, described as thermopower waves, “opens up a new area of energy research, which is rare,” says Michael Strano, MIT’s Charles and Hilda Roddey Associate Professor of Chemical Engineering, who was the senior author of a paper describing the new findings that appeared in Nature Materials on March 7. The lead author was Wonjoon Choi, a doctoral student in mechanical engineering.
Like a collection of flotsam propelled along the surface by waves traveling across the ocean, it turns out that a thermal wave — a moving pulse of heat — traveling along a microscopic wire can drive electrons along, creating an electrical current.
The key ingredient in the recipe is carbon nanotubes — submicroscopic hollow tubes made of a chicken-wire-like lattice of carbon atoms. These tubes, just a few billionths of a meter (nanometers) in diameter, are part of a family of novel carbon molecules, including buckyballs and graphene sheets, that have been the subject of intensive worldwide research over the last two decades.
A previously unknown phenomenon
In the new experiments, each of these electrically and thermally conductive nanotubes was coated with a layer of a reactive fuel that can produce heat by decomposing. This fuel was then ignited at one end of the nanotube using either a laser beam or a high-voltage spark, and the result was a fast-moving thermal wave traveling along the length of the carbon nanotube like a flame speeding along the length of a lit fuse. Heat from the fuel goes into the nanotube, where it travels thousands of times faster than in the fuel itself. As the heat feeds back to the fuel coating, a thermal wave is created that is guided along the nanotube. With a temperature of 3,000 Kelvin, this ring of heat speeds along the tube 10,000 times faster than the normal spread of this chemical reaction. The heating produced by that combustion, it turns out, also pushes electrons along the tube, creating a substantial electrical current.
Combustion waves — like this pulse of heat hurtling along a wire — “have been studied mathematically for more than 100 years,” Strano says, but he was the first to predict that such waves could be guided by a nanotube or nanowire and that this wave of heat could push an electrical current along that wire.
In the group’s initial experiments, Strano says, when they wired up the carbon nanotubes with their fuel coating in order to study the reaction, “lo and behold, we were really surprised by the size of the resulting voltage peak” that propagated along the wire.
After further development, the system now puts out energy, in proportion to its weight, about 100 times greater than an equivalent weight of lithium-ion battery.
The amount of power released, he says, is much greater than that predicted by thermoelectric calculations. While many semiconductor materials can produce an electric potential when heated, through something called the Seebeck effect, that effect is very weak in carbon. “There’s something else happening here,” he says. “We call it electron entrainment, since part of the current appears to scale with wave velocity.”
The thermal wave, he explains, appears to be entraining the electrical charge carriers (either electrons or electron holes) just as an ocean wave can pick up and carry a collection of debris along the surface. This important property is responsible for the high power produced by the system, Strano says.
Exploring possible applications
Because this is such a new discovery, he says, it’s hard to predict exactly what the practical applications will be. But he suggests that one possible application would be in enabling new kinds of ultra-small electronic devices — for example, devices the size of grains of rice, perhaps with sensors or treatment devices that could be injected into the body. Or it could lead to “environmental sensors that could be scattered like dust in the air,” he says.
In theory, he says, such devices could maintain their power indefinitely until used, unlike batteries whose charges leak away gradually as they sit unused. And while the individual nanowires are tiny, Strano suggests that they could be made in large arrays to supply significant amounts of power for larger devices.
The researchers also plan to pursue another aspect of their theory: that by using different kinds of reactive materials for the coating, the wave front could oscillate, thus producing an alternating current. That would open up a variety of possibilities, Strano says, because alternating current is the basis for radio waves such as cell phone transmissions, but present energy-storage systems all produce direct current. “Our theory predicted these oscillations before we began to observe them in our data,” he says.
Also, the present versions of the system have low efficiency, because a great deal of power is being given off as heat and light. The team plans to work on improving that.

-Provided by Georgia Institute of Technology, Massachusetts Institute of Technology and PhysOrg.


Categories: Nanotech, Research, Sustainability, Technology


studying: architecture design


Connect with archimorph and help grow the network.

2 Comments on “thermopower waves”

  1. May 16, 2010 at 12:15 am #

    Hello, i found your site at yahoo and you are providing interesting stuff. I like it,

  2. June 7, 2017 at 11:37 pm #

    Hello,I check your blogs named “thermopower waves | archimorph” regularly.Your story-telling style is witty, keep doing what you’re doing! And you can look our website about love spells.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s